
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Non-Linear Control Techniques

for Stabilization of Nonholonomic

Systems

by

Naveed Hussain

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Engineering

Department of Electrical Engineering

2022

www.cust.edu.pk
www.cust.edu.pk
naveed.hussain093@yahoo.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Copyright © 2022 by Naveed Hussain

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



ii

Dedicated to my teachers who enlightened my soul and directed me towards the

right path. Dedicated to my parents who always prayed for me and my friends

who have encouraged and supported me in every situation.



CERTIFICATE OF APPROVAL

Non-Linear Control Techniques for Stabilization of

Nonholonomic Systems

by

Naveed Hussain

(MEE181018)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Suheel Abdullah Malik IIU, Islamabad

(b) Internal Examiner Dr. Aamer Iqbal Bhatti CUST, Islamabad

(c) Supervisor Dr. Fazal ur Rehman CUST, Islamabad

Dr. Fazal ur Rehman

Thesis Supervisor

September, 2022

Dr. Noor Muhammad Khan Dr. Imtiaz Ahmed Taj

Head Dean

Dept. of Electrical Engineering Faculty of Engineering

September, 2022 September, 2022



iv

Author’s Declaration

I, Naveed Hussain hereby state that my MS thesis titled “Non-Linear Con-

trol Techniques for Stabilization of Nonholonomic Systems” is my own

work and has not been submitted previously by me for taking any degree from

Capital University of Science and Technology, Islamabad or anywhere else in the

country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Naveed Hussain)

Registration No: MEE181018



v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Non-Linear

Control Techniques for Stabilization of Nonholonomic Systems” is solely

my research work with no significant contribution from any other person. Small

contribution/help wherever taken has been dully acknowledged and that complete

thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Naveed Hussain)

Registration No: MEE181018



vi

Acknowledgement

First of all, I am thankful to Almighty Allah who blessed me with knowledge,

strength, courage and patience during my studies. I am also very grateful to my

supervisor Dr. Fazal ur rehman who monitored the progress of this thesis very

closely and provided insights at every stage and corrected the direction where ever

necessary.

I would like to pay huge debt of gratitude to my dearest family members: my

father, my mother and my siblings who always supported me during thick and

thin and encouraged me to stay motivated through out my degree program in

order to reach my destination.

I would also like to express my thanks to everyone that helped me to achieve my

goals. I also want to express my special appreciation to Dr. Noor Muhammad

Khan and Dr.Imtiaz Ahmad Taj for increasing my knowledge and helping me to

grasp the basic concepts.

I feel honor to express my feeling of appreciation for the support I have received

from the members of Research Group of control system and especially Yaseen,

Nadir Mehmood, Sidra Ghayour and Wadood Alam who helped me in my research

work and documentation of the thesis

(Naveed Hussain)



vii

Abstract

Many real-world systems exhibit velocity-dependent and/or acceleration depen-

dent constraints in their mathematical models. If the constraints are non-integrable

then such systems are known as nonholonomic systems. Rolling Wheel, Rolling

Sphere, unmanned aerial vehicles (UAVs), robots, underwater vehicles and ver-

tical and landing systems are the examples of nonholonomic systems. Smooth

static feedback controller cannot stabilize these systems, requires time-varying or

discontinuous state-feedback control. In this research, we are considering higher-

order nonholonomic systems that can be transformed into chained or power form

which are canonical representations of these mechanical systems. The importance

of stabilization problem of perturbed nonholonomic systems is further magnified

by the variety of real-world day-to-day applications.

This research presents the solution to the stabilization problems for a selected class

of perturbed higher-order nonholonomic mechanical systems. The methodologies

are based on backstepping control and adaptive sliding mode control (ASMC).

For the perturbed nonholonomic system, the original system is transformed into

perturbed chained form. The stabilizing controller for the transformed system is

constructed. The compensate controller and the adaptive laws are derived in such

a way that derivative of a Lyapunov function becomes strictly negative. The valid-

ity of the proposed controllers is verified by simulation higher-order nonholonomic

systems in MATLAB.
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Chapter 1

Introduction

This chapter discusses a brief summary of Nonholonomic Systems. Furher, this

chapter also answers why stabilizing the Perturbed and Higher-Order Nonholo-

nomic Systems in a conical form is important. The introduction is accompanied

by research motivation for stabilizing perturbed and higher-order nonholonomic

systems in a canonical form under the heading of research motivation.Moreover

this section is about the brief overview of this dissertation.

1.1 Background

The design of Robust Stabilizing Control techniques for Nonholonomic Systems

has gained great significance over the past couple of decades. Mechanical systems

can be classified into two type of systems based on the nature of constraints i.e.

1) Holonomic systems and 2) Nonholonomic Systems. The word ”Holonomic” is

derived from two Greek words holos which means whole and nomos which means

Law [1]. In mechanics, Holonomic systems are mechanical systems working under

constraints, which limit the entire configuration of the mechanical system. The

fundamental difference between a Holonomic and Nonholonomic constraint (usu-

ally provided in kind of velocity, acceleration or higher-order time derivative of

acceleration) is that the Holonomic constraint is integrable, whereas the Nonholo-

nomic constraint is non-integrable. A typical case of a Holonomic constraint is

1
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the fixed length of a simple pendulum; whereas, the rolling ball and rolling disk

without side slip are examples of systems having Nonholonomic constraints [2].

In Nonholonomic systems, the presence of non-integrable constraints makes the

control problem of the systems a lot more challenging. Due to the wide range

of applications of Nonholonomic systems, attention has been paid to design feed-

back controllers for such systems. These systems are widely been used in several

industries which includes transportation, robotics, security , space exploration

and inspection [3, 4]. Although these nonlinear systems are controllable; how-

ever, the Nonholonomic systems don’t satisfy the necessary Brockett’s condition

for smooth stabilization [5] . Consequently, the well entrenched smooth nonlin-

ear control methodologies are not directly applicable to the control problem of

these mechanical systems. Moreover, real-world systems often operate alongside

input/model uncertainties and noise disturbances. The effect of these uncertain-

ties and disturbances upon the overall dynamics of the system is considered during

the controller design, since uncertainties or disturbances can degrade the system’s

performance or can even cause system instability if not paid due consideration.

Thus, the problem of stabilizing Nonholonomic systems while dealing with the

input/model uncertainties is becoming a significant area of research.

Nonholonomic systems can be further classified as:

� First order nonholonomic systems

� Second order nonholonomic systems

� Higher order nonholonomic systems

The constraints in first-order systems include the constraints of position and ve-

locity i.e. ψ(q, q̇) = 0. The example of first-order systems includes Wheeled

vehicles and robots. The constraints of second-order systems include position,

velocity and acceleration ψ(q, q̇, q̈) = 0. Examples of second-order Nonholo-

nomic systems include space robots, spacecrafts, underwater vehicles, surface ves-

sels and under-actuated manipulators [6]. Similarly, the higher-order nonholo-

nomic systems specifically the third-order systems have constraints of position,

velocity, acceleration and jerk which can be symbolically illustrated as follows
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ψ(q, q̇, q̈,
...
q ) = 0. The one of the real world illustrations of such systems include the

dynamics of PPR (Prismatic-Prismatic-Revolute) manipulator movement working

under the jerk constraint.

In the design of a control system, it is more effective to transform the system to

some Canonical form via input or state variable transformation. The Chained

form is one of the widely used Canonical form which is discussed in [7]. In [3], it is

presented that Nonholonomic systems can be (locally or globally) transformed into

the Chained form under an appropriate coordinate transformation system. Many

nonholonomic systems having first-order constraints can be (globally or locally)

transformed into first-order canonical form. Similarly, the second-order Canonical

form plays the same role for the second-order systems as the first order Canonical

form system [8]. Through this transformation, the dynamics of the system get

significantly simplified and, therefore, it becomes easier to design the control laws.

1.2 Motivation

Before the market arrival Nonholonomic systems and their practical use, their

scope was limited to numerous scientific and academic terminologies. However,

nowadays, a vast selection of these systems is available and being deployed in var-

ious areas owing to their significance in practical usage. Nonholonomic system

poses new control problems which require the fundamental non-linear approach

to address them. The linear approximation of these systems around an arbitrary

equilibrium point may not be controllable, and the feedback linearization technique

may fail to transform the system for linear control problem. However, under cer-

tain conditions, the feedback stabilization and tracking problems are solved by

time-varying control or the discontinuous feedback control strategy.

Nonholonomic systems provide a fantastic platform for research and education

related areas. The kinematic constraints which are called ”Nonholonomic con-

straints” present in these systems make the control design a complicated problem.

When we discuss Nonholonomic systems, some renowned examples include; a Two-

Wheel Car Model, a Front-Wheel Car Model, a Vehicle with Trailer Model, and a
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Firetruck Model. These mobility of these robots make them highly susceptible to

external disturbances e.g. slippery floor or dusty air. So the design of control laws

for such systems in the clear presence of external disturbances or uncertainties is

an essential but difficult task.

1.3 Research Objectives

In the light of motivation provided above for carrying this research and the prob-

lems that arise during the stabilization of Nonholonomic systems, This work aims

to investigate a novel and more efficient feedback control design methodology for

the Nonholonomic system stabilization [5]. Moreover, the simultaneous existence

of uncertainties and constraints in Nonholonomic systems make the controller de-

sign for its stabilization a lot more difficult. Therefore the research methodology

should certainly be general and be applicable to a wide range of Nonholonomic

systems instead of limiting its scope to a specific system. Meanwhile, in the ab-

sence of smooth static time-invariant feedback law, the principal objective is to

develop such techniques that are based on discontinuous feedback control laws.

That’s why, this work has focused on discontinuous control law based on Adap-

tive Sliding Mode Control and nonlinear control based on Integral Backstepping

Control.

1.4 Outline of the Thesis

After having discussed about the Nonholonomic systems; below is given a breif

account of organization of this desertation:

� Chapter 2:

This chapter ”Literature Review” entails a detailed and in depth exploration

into the Literature or previous works related to the stabilization problem of

Nonholonomic systems and discusses the previous control techniques applied

to nonholonomic systems.
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� Chapter 3:

The third chapter is about how to convert a second order Nonholonomic

system to first order chain form.

� Chapter 4:

In this chapter a brief discussion is provided about the design of Integral

Backstepping Control and its application to Nonholonomic systems.

� Chapter 5:

This chapter is all about results and analysis where two methods of adaptive

sliding mode control are separately designed and applied to Nonholonomic

systems. First method is applied to systems with an assumption that system

is unperturbed. In other method the system is assumed to be perturbed

in which external disturbances are estimated by using basis functions.The

results obtained through both of these methods are compared and based

comparison and analysis is drawn which is concluded in chapter 6.

� Chapter 6:

Chapter 6 concludes all the discussion provided in the previous chapter.

It also suggests the future suggestions which needs to be considered while

designing control laws for Nonholonomic systems which can lead towards

more elaborated research development in the field.



Chapter 2

Literature Survey

This chapter entails a detailed and in depth exploration into the Literature or

previous work which has been done related to the stabilization of Nonholonomic

systems and discusses the previously implemented control techniques on nonholo-

nomic systems. It mainly reviews the control perspective, dynamic modeling and

different analytical tools and control techniques that have been designed over the

past years for Nonholonomic systems.

2.1 Control Problem of Nonholonomic Systems

The issue of control systems subjected to non-integrable constraints has attracted

the sight of control community since the 1980’s. Initial research in the field was

centered around systems with non-integrable kinematic relations. For example,

classical first-order nonholonomic systems which include systems with rolling con-

straints and systems involving symmetries which lead to non-integrable conserved

angular momentum. The widely studied examples were mobile robots, wheeled ve-

hicles, robot manipulation and space robots. These studies covered the problems of

controllability, motion planning, feedback stabilization and tracking control. The

motion planning problem was basically investigated in [9] which discusses how to

achieve controllability of car-like robot with just one Nonholonomic constraint. In

[10], Nonholonomic systems as an example of inherently nonlinear control systems

6
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were identified and an overall process of constructing a piece-wise analytic state

feedback was presented. The Controllability proof for a multibody mobile robot

using tools from differential geometry is discussed in [11]. A Nonholonomic motion

planning approach using geometrical phases was illustrated in [7]. In [8], it had

been suggested to stabilize the system in regards to a trajectory rather than a

point. Using a non smooth and time-varying feedback controller, global asymp-

totic stability for any desired configuration was achieved in [12]. Other notable

developments include the research of controllability, motion planning [13], stabi-

lization [14] and tracking control [6] of classical first-order Nonholonomic systems.

In [15], the ideas presented in [10] were further extended to systems which satisfy

the second-order Nonholonomic constraints. Similarly, some under-actuated sys-

tems have also been qualified as second-order Nonholonomic systems based on their

configuration. The UMS are such systems which have fewer actuators aas com-

pared to DOF. The under-actuated robot manipulators, autonomous under-water

vehicles, underactuated surface vessels, the planar vertical take-Off and landing

aircraft and under-actuated space vehicles are types of UMS belonging to this class

[16]. The key difference is that the second-order Nonholonomic systems include

drift terminologies which make the control of these systems a lot more difficult.

Whereas, generally speaking, the second-order Nonholonomic systems also don’t

satisfy the Brockett’s Necessary Condition (like that of first-order Nonholonomic

systems) [9]. Many approaches have been identified for overcoming this problem

which may be classified into the Time-varying but Continuous Feedback Control

[3, 17], the Discontinuous Control [18] and the Hybrid Control [19].

Recently, substantial effort on the dynamics formulation for higher-order nonholo-

nomic systems has been witnessed. Representative work in this field of higher-order

nonholonomic systems include the investigation by Nielsen, Mangeron, Tzenoff,

Appell, Deleanu and Gibbs. Subsequently, modern kinds of differential equations

of nonholonomic systems with higher-order constraints were derived. A particular

constraint called program constraint is just a demand imposed on a system by

design. These program and material constraints are then a part of a unified for-

mulation providing a theoretical framework for the research of robot performance
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under constrained environments. [20] provides an example of a higher-order Non-

holonomic system i.e. a Planar Prismatic-Prismatic-Revolute Robotic Manipula-

tor under the subjection of a jerk constraint. Jerk is a novel case of third-order

constraint and is identified as fast changing actuator force in the domain of robot

manipulators. Furthermore, jerk is characterized as the triple time derivative of

distance. Excessive quantity of jerk results in early wear and tear of the actua-

tors. It produces resonant vibrations in the robotic body and thus makes accurate

tracking much more challenging. Specific studies on humans, demonstrate that

human brain also realizes a variant of minimum-jerk while grasping actions are

now being planned for the arms [21].

2.2 Control Strategies for Nonholonomic

Systems

The closed-loop approaches have received wider acknowledgment owing to that

these provide stabilization of second- and higher-order nonholonomic systems. It

includes time-varying Continuous Control, Discontinuous Control as well as Hybrid

Control.

2.2.1 Time-Varying Continuous Controls

The two approaches for crafting time-varying continuous control suggested in lit-

erature are periodic and a-periodic feedback control. The periodic method was

proposed by [20] which is based on the power form. Whereas, the a-periodic time-

varying feedback control was investigated in [22] and output feedback control based

on time varying delay in [21].

The benefits of periodic and aperiodic time-varying continuous methodologies in-

clude the input control and state variables are all smooth, asymptotically converg-

ing with no oscillations (or sometime damped oscillations, which is damped with

time). However, their disadvantage includes that the input depends upon suitable
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tuning of parameters which depends on the system’s initial states. Initial states

must be in convergence region of the control input.

2.2.2 Discontinuous Feedback Control

The discontinuous feedback control avoids the issue of designing a single continu-

ous control by allowing the design of the time-varying counterpart. The primary

idea in discontinuous control is to change the control law when system’s states

try to move away from stable manifold. These feedback controllers for stabilizing

Nonholonomic systems can further be categorized into piece-wise continuous as

well as the Sliding Mode Controllers.

The α-process, as discussed in [23], is usually a prevalent methodology of discon-

tinuous controls system design. After applying a state transformation, a stabilized

linear system is obtained after which it becomes possible to choose a linear control

law to assign stable eigenvalues. Hence, the system can be recognized as globally

exponentially stable. Simultaneously, its discrepancy is that the linear control can

not be defined for the entire state space.

So, to overcome this challenge, it is recommended to first move the system away

from singularity by employing open-loop controls on an calculated time ts and

afterwards switching it on the linear feedback control law [23]. In [24], a formula

is acquired from a piece-wise control Lyapunov function for acquiring global sta-

bilization. While no general method exists for designing the control-Lyapunov

function which can satisfy conditions of [24]. A piece-wise continuous stabilization

of some specific models are mentioned in [24].

In [25] a discontinuous controller is proposed for the higher-order canonical form

system (special from in which systems state model represented), which takes two

input variables. Exponential convergence is achieved, towards a point, to become

a stabilized system which means that the system trajectories converge exponen-

tially towards a single point. However, considering the controller and closed-loop

system to be stabilized at a single point does not imply the stability property in

the sense of Lyapunov function.



Literature Review 10

The Sliding mode control (SMC) proposed in [26, 27], is utilized to develop dis-

continuous time-invariant feedback laws. This discontinuous control enforces the

system to go along a well-defined stable manifold towards equilibrium. SMC con-

struction was used for a certain class of higher-dimensional classical and dynamic

types of Nonholonomic systems [28]. However, the key disadvantage of using SMC

is that it hinders its widespread use due to the chattering phenomenon.

2.2.3 Hybrid Control

The Hybrid Control (HC) takes the advantage of both discrete-time and continuous-

time control. Effective features of discrete and continuous control are used. The

working of HC system depends on variation between different continuous-time

controllers at discrete-time instants. The controller switching instant is altered

online during the operation of the controller. The soft computing methodologies

for Nonholonomic systems based on Neural Networks is discussed in [29, 30] and

based on SMC , are discussed in [31].

2.3 Types / Orders of Nonholonomic Systems

The phenomenon of nonholonomy, in mechanical systems, can occur because of

the following two reasons:

� If a rolling body moves over another body or a rolling body moves over plane

without any slippage.

� if a multi-body system, conservation of momentum is maintained with under-

actuated control.

The Nonholonomic systems can further be classified on the basis of order of sys-

tem or constraints on systems as first order systems, second order systems and

higher-order systems. Systems with constraints of first, second or even third-order

have been mathematically modeled and frequently reported in the literature. The
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first order Nonholonomic Systems (FONHS) has position and velocity constraints,

while second-order Nonholonomic systems (SONHS) have position, velocity and

acceleration constraints and third-order Nonholonomic systems (TONHS) have

position, velocity, acceleration and jerk constraints.

2.3.1 First-Order Nonholonomic Systems

In kinematic systems, state variable x represents to configuration q and the quan-

tity of velocity constraints is given by k = n−m > 1, i.e. it is the entire dimension

of configuration space excluding the control space.

2.3.1.1 Four Wheel Car

Simple first-order model of a four wheel car is shown in Figure. (2.1). If u1 and u2

are the driving and steering velocities respectively then the mathematical model

for four wheel car system is presented by the following set of equations:


ẋ

ẏ

θ̇

ϕ̇

 =


cos(θ)

sin(θ)

1
l
tan(ϕ)

0

u1 +

0

0

0

1

u2 (2.1)

2.3.2 Second-Order Nonholonomic Systems

The Under-actuated Mechanical Systems (UMS) can lead towards second-order

constraints (position, velocity and acceleration constraints, these systems have

less number of actuators than configuration variables). Let us consider an un-

deractuated mechanical system with q as the set of generalized coordinates. The
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Figure 2.1: Kinematic Model of a Four-Wheel Car

equation of motion for the UMS is given below:

M11(q1q2)q̈1 +M12(q1q2)q̈2 + F1(q, q̇) = B(q)u

M21(q1q2)q̈1 +M22(q1q2)q̈2 + F2(q, q̇) = 0
(2.2)

Equation (2.2) defines n − m number of relations which involve the generalized

coordinates, first and second-order derivatives. If these n −m equations are not

integrable, then these equation can be regarded as Nonholonomic constraints of

second order systems.

2.3.2.1 Underactuated Surface Vessel

Vessel is one of the good example and benchmark second order nonholonomic sys-

tem. The vessel shown in Figure (2.2) is an under actuated mechanical system

with zero velocity constraint and damping factor. The relationship of earth-fixed
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Figure 2.2: Underactuated Surface Vessel

(inertial frame) and the body frame is specified model. The kinematic model of

vessel is represented in equation (2.3).

ẋ = vxcosψ − vzsinψ

ż = vsinψ + vzcosψ

ψ̇ = wz

(2.3)

In kinematic model of vessel which represents in (2.3), the state x represent inertial

position of center of mass, z also represent inertial position of center of mass, ψ

is the orientation of vessel, whereas the linear velocity is expressed by vx, vz and

angular velocity is expressed by wz.

2.3.3 Third-Order Nonholonomic Systems

Since the start of the 21st century, considerable efforts have been made directly into

formulation of theory regarding control of higher-order Nonholonomic constraints
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[32]. The constraints, defined as, the program constraints, occur by imposing spe-

cific conditions on the allowable trajectories. For example, second nonholonomic

constraints and third-order nonholonomic constraints occur by imposing torsion

and curvature constraints on robot trajectories. By following [32, 33], systems

with higher order nonholonomic constraints could be written by using the follow-

ing models after suitable input transformation and state transformations [34]:

p
(q)
1 = u

p
(q)
2 = J(p, ṗ, ...., p(q−1))u+R(p, ṗ, ...., p(q−1))

(2.4)

The (2.4) (which represents the input and state transformation) p1 ∈ Rm, m ≥ 2

provides the actuated configuration variables, whereas u ∈ Rm represents the mod-

ified control, and u ∈ Rn−m represents the configuration variables where control

is achieved through system coupling.

2.3.3.1 PPR Manipulator

The Planar Prismatic-Prismatic-Revolute Robot Manipulator (PPRM) moving on

a horizontal plane such that the gravity term could be avoided is shown in Figure

(2.3).

...
x sinϕ− ...

y cosϕ = 0 (2.5)

or

...
y sinϕ− ...

x cosϕ = 0 (2.6)

or

AT (p, ṗ, p̈)
...
p = 0 (2.7)

or

AT (p̈, ṗ, p)
...
p = 0 (2.8)

where:

AT (p, ṗ, p̈) = [sinϕ − cosϕ 0]

or

AT (p̈, p, ṗ) = [0 sinϕ − cosϕ] or AT (p, p̈, ṗ) = [sinϕ 0 − cosϕ]
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Figure 2.3: Planar PPR Manipulator

2.4 Sliding Mode Control

Sliding Mode Control (SMC) is a nonlinear control strategy with the ability of

robustness against uncertainties in the system. SMC is regarded as a discontinuous

control technique due to the discontinuity in controller. Its structure is pretty

much easy for design and application. In addition to being a control technique, it

is also employed for the disturbance estimation and disturbance rejection. SMC

is actually a variable structure control system design procedure. The basics of

sliding mode control is discussed in [35, 36]. The sliding plane and reaching phase

are briefly discussed in [37].

2.4.1 Sliding Phase

Sliding phase is the very first step while designing the sliding mode control. In

order to employ SMC, initially, a sliding surface (SS) design is required. The

sliding surface can be linear or non linear. The sliding surface is also termed
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Figure 2.4: Sliding Phase, Reaching Phase and Sliding Surface

as switching surface, sliding manifold or hyper plane. Having defined the hyper

plane, the aforementioned two phases come into place in specific order. Reaching

phase (RP) is responsible for attraction of system states from an initial condition

along switching surface. When reaching phase is attained, the system lies upon

the sliding surface, then sliding mode (SM) into place, the system’s states slide

towards the origin (which is equilibrium position) utilizing a discontinuous control

action (which also ensures robustness, but having chattering nature). Fig. 2.4

shows the reaching phase (RP) or sliding mode (SM) and sliding surface (SS) or

sliding manifold. In 2.4 also shows a chattering nature of sliding mode control.

2.4.2 Chattering Phenomenon

The phenomenon of Chattering occurs due to discontinuous control term which

is very unnatural and undesirable. It causes undesired effects in mechanical and

electro-mechanical parts. This phenomenon leads to undesirable oscillations (some

cause the break of mechanical parts or controller failure) that affect the perfor-

mance of the control in particular and the system in general as shown in Fig. 2.5.

The effect of chattering can be avoided by using various solutions that have been
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Figure 2.5: Chattering of control input along sliding surface

proposed in literature. Based on literature review, it is found that Dynamic Sliding

Mode Control (DSMC) and High Order Sliding Mode (HOSM) control techniques

are useful in reducing the affect of chattering.

2.5 Summary

This chapter has provided literature review on Nonholonomic systems. Along-

side, different control techniques and its achievements are mentioned which were

previously been utilized in order to stabilize the Nonholonpmic systems. The

mathematical model and types of nonholonomic systems are discussed. The ba-

sics of sliding mode control is also discussed in this chapter.



Chapter 3

Nonholonomic Systems in

Chained Form

This chapter discusses novel solutions to the problem of stabilizing the Nonholo-

nomic systems that are expressed in canonical chained form. The methodologies

are based on adaptive ISMC. Firstly, the chained form system is transformed into

a Special Structure which comprises of nominal portion and various unknown vari-

ables which come through input transformation. Then the transformed system is

stabilized by using ISMC control and the unknown terms are computed by using

adaptive techniques. The controller for the transformed system consists of nominal

control and compensator control. The proposed method is tested on second-order

Nonholonomic systems. Subsequently, perturbations are included in the control

input and robust stabilizing algorithm is designed in order to overcome the un-

certainties. The performance of the proposed methodologies is verified through

simulations.

3.1 Second-Order Nonholonomic Systems

During the last couple of decades, most of the publications in literature on nnholo-

nomic systems had been on mechanical systems with the first-order nonholonomic

18
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constraints. Only recently, the under-actuated systems with second-order nonholo-

nomic constraints got the attention of researchers in control system engineering

society. In [38], the researchers discovered a class of underactuated mechanical

system with second-order Nonholonomic constraints. The under-actuated robots,

ball and beam system, autonomous underwater Vehicles (AUVs), inverted pendu-

lum, underactuated surface vessels and the PVTOL aircraft are few examples of

under-actuated systems belonging to this class [38]. The main difference between

the two types is that the second-order Nonholonomic systems include drift terms

which make the control of these systems much more difficult. Whereas, in general,

the second-order Nonholonomic systems also do not satisfy Brockett’s Necessary

Condition for smooth time-invariant systems which is also similar to the first-order

Nonholonomic systems [5].

3.2 Second-Order Chained Form Systems

A second-order chained form system can be defined through the following set of

equations:

ẍ1 = v1

ẍ3 = v2

ẍ5 = x3v1

(3.1)

In equation (3.1) represents the model in second order dynamic form, In first order

form can be written as:

ẋ1 = x2

ẋ2 = v1

ẋ3 = x4

ẋ4 = v2

ẋ5 = x6

ẋ6 = x3v1

(3.2)
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This second-order chained form plays the exact same role for the second-order

Nonholonomic systems as that of the simple chained form system for the first-

order Nonholonomic systems. Thus, the dynamics of second-order chained form

system are considerably simplified and, therefore, simple to control. It is well

known from equation (3.1) that a class of UMS could be transformed to second-

order canonical form by constructing input and coordinate transformations [39].

Systems which can be transformed to the second-order chained form include: an

under-actuated planar horizontal 3-link serial-drive PPR manipulator (PPR means

two prismatic and one revolute joint), an under-actuated planar horizontal PPR

manipulator with spring-coupled third link, an under-actuated planar horizontal

3-link serial-drive RRR manipulator, a manipulator driven by end-effector forces,

an under-actuated planar horizontal parallel drive RRR manipulator with any

two joints unactuated, a planar rigid body having an unactuated DOF, an under-

actuated surface vessel and son and so forth [6].

3.3 The Stabilization Problem

Taking a general second-order Nonholonomic system into consideration which can

be described as under:

D(q)q̈ + C(q, q̇)q̇ +G(q) = F (q)u (3.3)

where:

q ϵ Rn represents the configuration vector.

D(q) ϵ Rn×n represents the positive definite inertia matrix.

C(q̇, q)q ϵ Rn represent the Centrifugal and Coriolis terms respectively.

G(q) is the gravity term.

If we assume F (q) = [Im 0]T and u ϵ Rn the actuator input vector then the desired

set point can be given as follows; xdes =

qdes
q̇des

. The design feedback controller or

control input u(q, q̇) is designed such that the desired set point xdes is an attractive

set for system provided in equation (3.3).
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3.4 3-DOF Manipulator with a Free Link

Figure3.1 shows a 3-DOF manipulator in horizontal plane. The manipulator has

first two prismatic joints that are active. These joints control the third unactuated

joint. It is assumed that the third free joint is a revolute around the vertical axis.

Assign the coordinate frames ΣB, ΣL, θ, (x, y) as given in [40]. The generalize

coordinates representing the manipulator configuration are given as (x, y, θ).

Therefore, the equations of motion according to the third link are given as under

as was discussed in [40].

fx = mẍ−mdθ̈Si(θ)−mdθ̇2Cs(θ)

fy = mÿ +mdθ̈Cs(θ)−mdθ̇2Si(θ)

0 = −mdẍSi(θ) +mdÿCs(θ) + (I +md2)θ̈

(3.4)

where:

Si = sin, Cs = cos, and I are the moment of inertia of third link around G, m is

the mass of third link, [fx, fy] is the translation force and d is the distance |OG|

between the center of gravity and the joint. By denoting γ = d+I/md, the system

constraint becomes:

− ẍSi(θ) + ÿCs(θ) + γθ̈ = 0 (3.5)

Figure 3.1: (a) 3-DOF Manipulator with a Free Joint. (b) Model of Passive
Link.
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3.4.1 Conversion into Second-Order Chained Form

Let ẍ = α1 and ÿ = α2. Then, (3.5) can be written as:

ẍ = α1

ÿ = α2

θ̈ =
1

γ
Si(θ)α1 −

1

γ
Cs(θ)α2

(3.6)

Using the input transformation;

α1 = τ1

α2 = tn(θ)τ1 − γSe(θ)τ2

(3.7)

where Se = sec and tn = tan, the system provided in equation (3.6) can be trans-

formed as:

ẍ = τ1

θ̈ = τ2

ÿ = tn(θ)τ1 − Se(θ)τ2

(3.8)

Using another transformation;

x1 = x+ γcosθ

x3 = tanθ

x5 = y + γsinθ

v1 = τ1 − γsinθτ2 − γcosθθ̇2

v2 = sec2θτ2 + 2sec2θtanθθ̇2

(3.9)

Applying the transformation provided in equation (3.9) and applying the trans-

formation provided in equation (3.8), then equation(3.8) can be written in second-

order chained form as follows:

ẍ1 = v1

ẍ3 = v2

ẍ5 = x3v1

(3.10)
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3.5 Planar PPR Manipulator

Let us consider a PPR robot as shown in Fig. (3.2). For simplicity, we have

considered that the robot is moving in a horizontal plane. All the joints of the

robot are passive and the input forces are applied on the end effector only. Let d3

be the distance between mass center of 3rd link and the joint axis, l3 the length of

third link, mi the mass of the ith link and I3 the central moment of inertia. The

dynamical model of the robot can be given as:

M(qγ)q̈γ +H(qγ, q̇γ) = JT (qγ)F

M(q3)q̈3 +H(q3, q̇3) = JT (q3)F
(3.11)

Equation (3.11) can be rewritten as:

a1q̈1 + a4cos(q3)q̈3 − a4q̇
2
3sin(q3) = Fy

a2q̈2 − a4sin(q3)q̈3 − a4q̇
2
3cos(q3) = Fx

a4cos(q3)q̈1 − a4sin(q3)q̈2 − a3q̈3 = −l3sin(q3)Fx + l3cos(q3)Fy

(3.12)

Figure 3.2: (a) Planar PPR Manipulator.
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Hence,

a1q̈1 + a4cos(q3)q̈3 − a4q̇
2
3sin(q3) = Fy

a2q̈2 − a4sin(q3)q̈3 − a4q̇
2
3cos(q3) = Fx

a4cos(q3)q̈1 − a4sin(q3)q̈2 − a3q̈3 = −l3sin(q3)Fx + l3cos(q3)Fy

(3.13)

3.5.1 Conversion into Second-Order Chained Form

In this section convert of system to second order chained form is shown. Rearrange

the equation (3.12a) to get:

q̈1 = −a4
a1
cosq3q̈3 +

a4
a1
sinq3q̇

2
3 +

1

a1
Fy (3.14)

Substitute (3.14) in (3.12) to get:

q̈2 =− 1

r2
(a24 − a1a3)a4cosq3q̇

2
3 +

1

r2
(l3a1a4sin

2q3 + a24cos
2q3 − a1a3)Fx

+
1

r2
(a1 − a4l3)a1cosq1sinq3Fy

q̈3 =
1

r1
(a1 − a2)a

2
4cosq3sinq1q̇

2
3 +

1

r1
(a1l2 − a4)a2sinq3Fx +

1

r1
(a2 − a1l3)

a2cosq3Fy

(3.15)

Hence,

q̈2 =− 1

r2
(a24 − a1a3)a4cosq3q̇

2
3 +

1

r2
(l3a1a4sin

2q3 + a24cos
2q3 − a1a3)Fx

+
1

r2
(a1 − a4l3)a1cosq1sinq3Fy

q̈3 =
1

r1
(a1 − a2)a

2
4cosq3sinq1q̇

2
3 +

1

r1
(a1l2 − a4)a2sinq3Fx +

1

r1
(a2 − a1l3)

a2cosq3Fy

(3.16)

Rearranging the above equations gives;

a4cosq3q̈1 − a4sinq3q̈2 + a1q̈3 =− l3sinq3(a2q̈2 − a4sinq3q̈3 − a4q̇
2
3cosq1)

+ l3cosq3(a1q̈1 + a4cosq3 − a4q̇
2
3)sinq1

q̈1(a4 − a1l3cosq1) =q̈2(a4 − a2l3)sinq3 + q̈3(a1l3 − a3)
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q̈1 =q̈2
a4 − a2l3
a4 − a1l3

tanq3 + q̈3
a4l3 − a1
a4 − a1l3

secq3 (3.17)

a4cosq3q̈1 − a4sinq3q̈2 + a1q̈3 =− l3sinq3(a2q̈2 − a4sinq3q̈3 − a4q̇
2
3cosq1)

+ l3cosq3(a1q̈1 + a4cosq3 − a4q̇
2
3)sinq1

q̈1(a4 − a1l3cosq1) =q̈2(a4 − a2l3)sinq3 + q̈3(a1l3 − a3)

q̈1 =q̈2
a4 − a2l3
a4 − a1l3

tanq3 + q̈3
a4l3 − a1
a4 − a1l3

secq3

(3.18)

By choosing,

v1 =
1

r2
(a24 − a1a3)a4cosq3q̇

2
3 +

1

r2
(l3a1a4sin

2q1 + a24cos
2q3 − a1a3)Fx

1

r2
(a4 − a1l3)a1cosq3sinq1Fy

v2 =
1

r1
(a2 − a1)a

2
4cosq3sinq3q̇

2
3 +

1

r1
(a2l3 − a4)a1sinq3Fx +

1

r1
(a4 − a1l3)

a2cosq3Fy

(3.19)

Above Equations reduce to the following form:

q̈2 = v1

q̈3 = v2

q̈1 = a5tanq3v1 + a6secq3v2

(3.20)

where a5 =
a4−a2l3
a4−a1l3

and a6 =
a4l3−a1
a4−a1l3

Using the input and state transformations:

x1 = q2 −
a5
a6

(cosq3 − 1)

x3 = a5tanq3

x5 = q1 − a6sinq3

u1 = v1 +
a5
a6
sinq3v2 +

a6
a5
cosq3q̇

2
3

u2 = a5sec
2q3v2 + 2a5sec

2q3tanq3q̇
2
3

(3.21)

the system (3.20) can be converted to the following form form:

ẍ1 = u1

ẍ3 = u2

(3.22)
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ẍ5 = x2u1

and can be written as:

ẋ1 = x2

ẋ2 = u1

ẋ3 = x4

ẋ4 = u2

ẋ5 = x6

ẋ5 = x3u1

(3.23)



Chapter 4

Backstepping Control Technique

This chapter presents a proposed control strategy which is based on Integral Back-

stepping Control Technique.

4.1 Problem Statement

For a given point xdes, design a control strategy which pushes the x → xdes as

time t→ ∞.

4.2 Backstepping

The second-order chained form system (3.1) can be written in state-space form as:

ẋ1 = x2

ẋ2 = v1

ẋ3 = x4

ẋ4 = v2

ẋ5 = x6

ẋ6 = x3v1

27
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ẋ6 = x3v1 (4.1)

Step 1:

First two equations of state space model as given in equation (4.1) are written as

follows:

ẋ1 = x2

ẋ2 = v1

(4.2)

Lyapunov function can be defined as:

Ve1 =
1

2
e21 (4.3)

e1 is the error between x1 and its desired value.

e1 = x1d − x1 (4.4)

Taking derivative of Lyapunov function;

V̇e1 = ė1e1

V̇e1 = e1(ẋ1d − ẋ1)

V̇e1 = e1(ẋ1d − x2)

(4.5)

Krasovskii-LaSalle principle:

If derivative of Lyapunov function is negative semi-definite then the system is

guaranteed to be a stable system [41]. Stabilization of e1 is achieved via virtual

control x2.

x2d = ẋ1d + k1e1 (4.6)

e2 can be defined as:

e2 = x2 − x2d

e2 = x2 − (ẋ1d + k1e1)

e2 = x2 − ẋ1d − k1e1

e2 + k1e1 = x2 − ẋ1d

(4.7)
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Augmented Lyapunov function can be written as:

Ve1,e2 =
1

2
e21 +

1

2
e22

V̇e1,e2 = e1ė1 + e2ė2

V̇e1,e2 = e1(ẋ1d − x2) + e2(ẋ2 − ẍ1d − k1ė1)

V̇e1,e2 = e1(ẋ1d − x2) + e2(v1 − ẍ1d − k1ė1)

V̇e1,e2 = e1(−e2 − k1e1) + e2(v1 − ẍ1d − k1(ẋ1d − ẋ1))

V̇e1,e2 = e1(−e2 − k1e1) + e2(v1 − ẍ1d − k1(ẋ1d− x2))

V̇e1,e2 = e1(−e2 − k1e1) + e2(v1 − ẍ1d + k1e2)

V̇e1,e2 = −k1e21 + e2(−e1 + v1 − ẍ1d + k1e2)

(4.8)

Choose v1 = e1 + ẍ1d − k1e2 − k2e2. Putt v1 in Eq. (4.8) to get:

V̇e1,e2 = −k1e21 − k2e
2
2 ≤ 0 (4.9)

Step 2:

Third and fourth equations of state space model (4.1):

ẋ3 = x4

ẋ4 = v2

(4.10)

Integral Lyapunov function can be defined as:

Ve3 =
1

2
e23 (4.11)

e3 is the error between x3 and its desired value.

e3 = x3d − x3 (4.12)

Take derivative of Lyapunov function.

V̇e3 = ė3e3

V̇e3 = e3(ẋ3d − ẋ3)
(4.13)
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V̇e3 = e3(ẋ3d − x2) (4.14)

x4d = ẋ3d + k3e3 (4.15)

e4 can be defined as:

e4 = x4 − x4d

e4 = x4 − ẋ3d − k3e3

e4 + k3e3 = x4 − ẋ3d

(4.16)

Augmented Lyapunov function can be written as:

Ve3,e4 =
1

2
e23 +

1

2
e24

V̇e3,e4 = e3ė3 + e4ė4

V̇e3,e4 = e3(ẋ3d − x4) + e4(ẋ4 − ẍ3d − k3ė3)

V̇e3,e4 = e3(ẋ3d − x4) + e4(v2 − ẍ3d − k3ė3)

V̇e3,e4 = e3(−e4 − k3e3) + e4(v2 − ẍ3d − k3(ẋ3d − ẋ3))

V̇e3,e4 = e3(−e4 − k3e3) + e4(v2 − ẍ3d − k3(ẋ3d − x4))

V̇e3,e4 = e3(−e4 − k3e3) + e4(v2 − ẍ3d + k3e4)

V̇e3,e4 = −k3e23 + e4(−e3 + v2 − ẍ3d + k3e4)

(4.17)

Choose v2 = e3 + ẍ3d − k3e4 − k4e4. Putt v2 in Eq. (4.17) to get:

V̇e3,e4 = −k3e23 − k4e
2
4 ≤ 0 (4.18)

Step 3:

Fifth and sixth equation of state space model (4.1):

ẋ5 = x6

ẋ6 = x3v1 + w − ŵ − w̃
(4.19)

Integral Lyapunov function can be defined as:

Ve5 =
1

2
e25 (4.20)
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e5 is the error between x5 and its desired value.

e5 = x5d − x5 (4.21)

Take derivative of Lyapunov function.

V̇e5 = ė5e5 + ˙̃ωω̃

V̇e5 = e5(ẋ5d − ẋ5)

V̇e5 = e5(ẋ5d − x6)

(4.22)

x6d = ẋ5d + 2k5e5 (4.23)

e6 can be defined as:

e6 = x6 − x6d

e6 = x6 − ẋ5d − k5e5

e6 + k5e5 = x6 − ẋ5d

(4.24)

Augmented Lyapunov function can be written as:

Ve5,e6 =
1

2
e25 +

1

2
e26 +

1

2
ω̃2

V̇e5,e6 = e5ė5 + e6ė6 + ˙̃ωω̃

V̇e5,e6 = e5(ẋ5d − x6 + k5e5) + e6(ẋ6 − ẍ5d − k5ė5) + ˙̃ωω̃

V̇e5,e6 = e5(ẋ5d − x6 + k5e5) + e6(x3v1 + w − ŵ − w̃ − ẍ5d − k5ė5) + ˙̃ωω̃

V̇e5,e6 = e5(−e6 − k5e5) + e6(x3v1 + w − ŵ − w̃ − ẍ5d − k5(ẋ5d − ẋ5)) + ˙̃ωω̃

V̇e5,e6 = e5(−e6 − k5e5) + e6(x3v1 + w − ŵ − w̃ − ẍ5d − k5(ẋ5d − x6)) + ˙̃ωω̃

V̇e5,e6 = e5(−e6 − k5e5) + e6(x3v1 + w − ŵ − w̃ − ẍ5d + k5e6) + ˙̃ωω̃

V̇e5,e6 = −k5e25 + e6(−e5 + x3v1 + w − ŵ − ẍ5d + k5e6) + ˙̃ωω̃ − ω̃e6

V̇e5,e6 = −k5e25 + e6(−e5 + x3v1 + w − ŵ − ẍ5d + k5e6) + ω̃( ˙̃ω − e6)

(4.25)

Choose

ω = e5 − x3v1 + ŵ + ẍ5d − k5e6 − k6e6

˙̃ω = e6 − k7ω̃

˙̂ω = − ˙̃ω (ω = ω̂ + ω̃ and ω=constant)
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Putt ω in Eq. (4.25) to get:

V̇e5,e6 = −k5e25 − k6e
2
6 − k7ω̃

2 ≤ 0 (4.26)

Step 4:

Overall lyapunov function can be written as:

V = Ve1,e2 + Ve3,e4 + Ve5,e6 (4.27)

Take derivative of lyapunov function.

V̇ = V̇ e1, e2 + V̇ e3, e4 + V̇e5,e6

V̇ = −k1e21 − k2e
2
2 − k3e

2
3 − k4e

2
4 − k5e

2
5 − k6e

2
6 − k7ω̃

2 ≤ 0

V̇ ≤ 0

(4.28)

General diagram of backstepping control is shown in Figure (4.1)

Figure 4.1: Backstepping control method

Figure (4.1) show the block diagram of backtepping feedback control technique

(nonlinear control technique).
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4.2.1 Simulation Results and Discussion

4.2.1.1 Planar PPR Manipulator

4.2.1.2 Simulation 1:

(a)

(b)

Figure 4.2: Stabilization of Planar PPR Manipulator, (a) Positions,
(b) Velocities
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(a)

(b)

Figure 4.3: Stabilization of Planar PPR Manipulator, (a) Control input u1 =
v1, (b) Control input u2 = v2

For Initial Condition 1: Fig. 4.2 represents a closed loop response of Planar

PPR Manipulator with backstepping control u1 and u2 in Figure (4.3). The con-

troller parameters are chosen as k1 = 1, k2 = 2.1, k3 = 2, k4 = 2.7, k5 = 1.2,

k6 = 1, k7 = 1.2. The controller stabilizes the system from initial condition

[x(0), y(0), θ(0), ẋ(0), ẏ(0), θ̇(0) = π, 1.8,−1.2, 1, 0.5,−0.5]T to stable equilibrium

position [0, 0, 0, 0, 0, 0]T in less than 8 seconds. The smooth control effort is shown
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in Figure (4.3). This control strategy is not robust and simulation is carried out

in thee absence of external disturbances.

4.2.1.3 Simulation 2:

(a)

(b)

Figure 4.4: Stabilization of Planar PPR Manipulator, (a) Positions,
(b) Velocities
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(a)

(b)

Figure 4.5: Stabilization of Planar PPR Manipulator, (a) Control input u1 =
v1, (b) Control input u2 = v2

For Initial Condition 2: In simulation 2, results are simulated with different

initial conditions as compare to simulation 1. Figure 4.4 represents a closed loop

response of Planar PPR Manipulator with Backstepping Control u1 and u2 in

Figure 4.5 respectively. The controller parameters are chosen as k1 = 1.3, k2 = 2.2,
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k3 = 1, k4 = 3, k5 = 1, k6 = 1.8, k7 = 1.7. The controller stabilizes the system

from initial condition [x(0), y(0), θ(0), ẋ(0), ẏ(0), θ̇(0) = 0, 0, 0, 0.3, 0, 0]T to stable

equilibrium position [0, 0, 0, 0, 0, 0]T in less than 7 seconds. The smooth control

effort is shown in Figure 4.5. This control strategy is not robust and simulation is

carried in the absence of external disturbances.

4.2.1.4 Simulation 3:

(a)

(b)

Figure 4.6: Stabilization of Planar PPR Manipulator, (a) Positions,
(b) Velocities
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(a)

(b)

Figure 4.7: Stabilization of Planar PPR Manipulator, (a) Control input u1 =
v1, (b) Control input u2 = v2

For Initial Condition 3: In simulation 3, results are simulated with different ini-

tial conditions as compared to simulation 1 and simulation 2. Figure 4.6 represents

a closed loop response of Planar PPR Manipulator with Backstepping Control u1

and u2 in Figure 4.7. The controller parameters are chosen as k1 = 1.4, k2 = 1.2,

k3 = 2, k4 = 1.5, k5 = 1.2, k6 = 2.8, k7 = 2. The controller stabilizes the system

from initial condition [x(0), y(0), θ(0), ẋ(0), ẏ(0), θ̇(0) = 0, 1,−0.6,−1, 0.1, 0]T to
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stable equilibrium position [0, 0, 0, 0, 0, 0]T in less than 6 seconds. The smooth

control effort is shown in Figure 4.7. This control strategy is not robust and sim-

ulation is carried out in the absence of external disturbances.



Chapter 5

Adaptive Sliding Mode Control

Technique

5.1 Introduction

The Sliding Mode Control (SMC) has attracted the interest of researchers quite

late as compared to the other control techniques discussed in the this thesis. Due

to its simplicity, fast response and robustness to external noise it has become

an epicenter in the field control design [41, 42]. These attributes of SMC just

rely on the design of the switching surface. The two phases of the SMC would

be the reaching phase and the sliding phase. During the reaching phase, the

system trajectories approache towards sliding surface. Whereas in sliding phase

the system trajectories are forced by controller to slide on the sliding surface

towards its origin. The system response is dependent upon the parameters of the

surface and remains insensitive to parameter variations and external disturbances.

5.1.1 Proposed Algorithm 1

The algorithm for Sliding Mode Control (SMC) can be designed in the following

series of steps:

40
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Step 1:

The second-order chained form system (3.1) is written in state-space form as fol-

lows;

ẋ1 = x2

ẋ2 = v1

ẋ3 = x4

ẋ4 = v2

ẋ5 = x6

ẋ6 = x3v1

(5.1)

Step 2:

Define v1 = x3, the system (5.1) is written as:

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = v2

ẋ5 = x6

ẋ6 = x23 + w − ŵ − w̃

(5.2)

Equation (5.2) can be divided into two sub systems represented by equation (5.3)

and equation (5.4).

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = v2

(5.3)

and subsystem 2 is:

ẋ5 = x6

ẋ6 = x23 + w − ŵ − w̃
(5.4)
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Step 3:

The step 3 defines the sliding surface for subsystem provided in equation (5.3):

s1 = x1 + c1x2 + c2x3 + x4

s = (
d

dt
+ 1)n−1x1 (5.5)

The coefficients c1 and c2 can be found by using (5.5) for Hurwitz Sliding Surface

as given below:

s1 = x1 + 3x2 + 3x3 + x4

ṡ1 = x2 + 3x3 + 3x4 + v2

(5.6)

Defining a Lyapunov function:

V1 =
1

2
s21

V̇1 = s1ṡ1

V̇1 = s1(x2 + 3x3 + 3x4 + v2)

(5.7)

Choose v2 = −x2 − 3x3 − 3x4 − k1s1 − k2sign(s1) to get:

V̇1 = −k1s21 − k2|s1| < 0 (5.8)

Step 4:

The step 4 includes defining a sliding surface for the subsystem of equation (5.4):

s2 = x5 + x6 (5.9)

Now take a nominal system:

s2 = x5 + x6

ṡ2 = x6 + x23 + w
(5.10)

and define a Lyapunov function:

V2 =
1

2
s22 +

1

2
w̃2 (5.11)
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V̇2 = s2ṡ2 + w̃ ˙̃w

V̇2 = s2(x6 + x23 + w − ŵ − w̃) + w̃ ˙̃w

V̇2 = s2(x6 + x23 + w − ŵ) + w̃( ˙̃w − s2)

(5.12)

Choose w = −x6 − x23 + ω̂ − k3s2 − k4sign(s2) and ˙̃w = s2 − k5w̃ to get:

V̇2 = −k3s22 − k4|s2| − k5w̃
2 < 0 (5.13)

Step 5: This step constitutes defining an overall Lyapunov for system expressed

in equation (5.2)

V =
1

2
V 2
1 +

1

2
V 2
2

V̇ = V1V̇1 + V2V̇2

V̇ = −k1s21 − k2|s1| − k3s
2
2 − k4|s2| − k5w̃

2 < 0

(5.14)

General diagram of backstepping control is shown in Figure (5.1) which is also

shown in previous chapter.

Figure 5.1: Backstepping control method

Figure (5.1) show the block diagram of backtepping feedback control technique

which is basically nonlinear control technique.
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5.1.2 Simulation Results and Discussion

5.1.2.1 3-DOF Manipulator with a Free Link

5.1.2.2 Simulation 1:

(a)

(b)

Figure 5.2: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Positions, (b) Velocities
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(a)

(b)

Figure 5.3: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Sliding surface s1, (b) Sliding surface s2

For Initial Condition 1: Figure 5.2 represents a closed loop response of 3-DOF

Manipulator with a Free Link with adaptive sliding mode control u1 and u2 in

Figure 5.4. The controller parameters are chosen as c1 = 3, c2 = 3, k1 = 1.3,

k2 = 2, k3 = 1, k4 = 1.6, k5 = 1.5. The controller stabilizes the system from initial
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conditions [x(0), y(0), θ(0), ẋ(0), ẏ(0), θ̇(0) = −π,−0.8, 0.2,−0.8,−6, 2.5]T to sta-

ble equilibrium position [0, 0, 0, 0, 0, 0]T in less than 7 seconds. The sliding surfaces

s1 and s2 shown in Figure 5.3 becomes 0 in about 5 seconds. This control strategy

is robust but simulation is carried out in the absence of external disturbances.

(a)

(b)

Figure 5.4: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Control input u1 = v1, (b) Control input u2 = v2
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5.1.2.3 Simulation 2

(a)

(b)

Figure 5.5: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Positions, (b) Velocities

Figure (5.5) represents the trajectories of positions and velocities of 3-DOF ma-

nipulator with a free link.
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(a)

(b)

Figure 5.6: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Sliding surface s1, (b) Sliding surface s2

Figure (5.6) represents the trajectories of sliding surfaces (linear sliding surface)

of 3-DOF manipulator with a free link. In figure (5.6a) and (5.6b) sliding sur-

faces converge towards equilibrium position in finite time, which ensure finite time

convergence of sliding surfaces.
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(a)

(b)

Figure 5.7: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Control input u1 = v1, (b) Control input u2 = v2

For Initial Condition 2: In simulation 2, results are simulated with different

initial conditions as compare to simulation 1. Figure 5.5 represents a closed loop

response of 3-DOF Manipulator with a Free Link with adaptive sliding mode con-

trol u1 and u2 in Figure 5.7. The controller parameters are chosen as c1 = 3,

c2 = 3, k1 = 1, k2 = 2.2, k3 = 1.7, k4 = 1, k5 = 1.1. The controller stabilizes

the system from initial condition [x(0), y(0), θ(0), ẋ(0), ẏ(0), θ̇(0) = 0, 0, 0, 0, 0, 0]T



Adaptive Sliding Mode Control Technique 50

to stable a equilibrium position [0, 0, 0, 0, 0, 0]T in less than 8 seconds. The sliding

surfaces s1 and s2 are shown in Figure 5.6 which become 0 in about 5 seconds.

This control strategy is robust but simulation is carried out in the absence of ex-

ternal disturbances.

5.1.2.4 Simulation 3

(a)

(b)

Figure 5.8: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Positions, (b) Velocities
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(a)

(b)

Figure 5.9: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Sliding surface s1, (b) Sliding surface s2

For Initial Condition 3: In simulation 2, results are simulated with different ini-

tial conditions as compared to simulation 1 and simulation 2. Figure 5.8 represents

a closed loop response of 3-DOF Manipulator with a Free Link with adaptive slid-

ing mode control u1 and u2 in Figure 5.10. The controller parameters are chosen
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as c1 = 3, c2 = 3, k1 = 1, k2 = 1.2, k3 = 2.7, k4 = 1.4, k5 = 1. The controller sta-

bilizes the system from initial condition [x(0), y(0), θ(0), ẋ(0), ẏ(0), θ̇(0) =0, 0.01,

0.6, 0, 1.2, -0.25]T to a stable equilibrium position [0, 0, 0, 0, 0, 0]T in less than 6

seconds. The sliding surfaces s1 and s2 shown in Figure 5.9 becomes 0 in about

3 seconds. This control strategy is robust but simulation is carried out in the

absence of external disturbances.

(a)

(b)

Figure 5.10: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Control input u1 = v1, (b) Control input u2 = v2
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5.1.3 Proposed Algorithm 2: With Disturbance

The second-order chained form system can be written in state-space form as pre-

sented in 5.1:

ẋ1 = x2

ẋ2 = v1

ẋ3 = x4

ẋ4 = v2

ẋ5 = x6

ẋ6 = x3v1

(5.15)

Step 1:

The system (5.15) with external disturbances can be written as:

ẋ1 = x2

ẋ2 = v1 + d1(x, t)

ẋ3 = x4

ẋ4 = v2 + d2(x, t)

ẋ5 = x6

ẋ6 = x3v1 + d3(x, t)

(5.16)

which can be written as:

ẍ1 = v1 + d1(x, t)

ẍ3 = v2 + d3(x, t)

ẍ5 = x3v1 + d5(x, t)
(5.17)

In system (5.17) d1(x, t), d3(x, t) and d5(x, t) are estimated using basis function

concept.

ẍ1 = v1 + k̂ijsin(nt) + k̂ijcos(nt) + k̃ijsin(nt) + k̃ijcos(nt)

ẍ3 = v2 + k̂izsin(mt) + k̂izcos(mt) + k̃izsin(mt) + k̃izcos(mt)

ẍ5 = x3v1 + w − ŵ − w̃ + k̂ihsin(qt) + k̂ihcos(qt) + k̃ihsin(qt) + k̃ihcos(qt)

(5.18)
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In system (5.18):

ij = 11, 12, 13, 14, 15.......

iz = 21, 22, 23, 24, 25.......

ih = 31, 32, 33, 34, 35.......

(n,m, q) = 10, 20, 30, 40, 50, 60.......

Step 2:

Define a sliding manifolds

s1 = x1 + cẋ1

s2 = x3 + cẋ3

s3 = x5 + cẋ5

(5.19)

Take derivative of sliding surface to find control inputs. Choose c = 1

s1 = x1 + cẋ1

ṡ1 = ẋ1 + ẍ1

ṡ1 = x2 + v1 + k̂ijsin(nt) + k̂ijcos(nt)

(5.20)

similarly sliding surface s2.

ṡ2 = x4 + v2 + k̂izsin(mt) + k̂izcos(mt) (5.21)

and sliding surface s3.

ṡ3 = x6 + x3v1 + w − ŵ + k̂ihsin(qt) + k̂ihcos(qt) (5.22)

Step 3:

Define a lyapunov function

V1 =
1

2
s21 +

1

2
k̃2ij

V̇1 = s1ṡ1 + k̃ij
˙̃kij

V̇1 = s1(x2 + v1 + k̂ijsin(nt) + k̂ijcos(nt) + k̃ijsin(nt) + k̃ijcos(nt)) + k̃ij
˙̃kij

V̇1 = s1(x2 + v1 + k̂ijsin(nt) + k̂ijcos(nt)) + s1k̃ij[sin(nt) + cos(nt)] + k̃ij
˙̃kij

V̇1 = s1(x2 + v1 + k̂ijsin(nt) + k̂ijcos(nt)) + k̃ij[s1(sin(nt) + cos(nt)) + ˙̃kij)]

(5.23)
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Choose

˙̃kij = −s1(sin(nt) + cos(nt))−Mk̃ij

v1 = −x2 − k̂ijsin(nt)− k̂ijcos(nt)− ks1 − ksign(s1)

Putt in Eq. (5.23) to get:

V̇1 = −ks21 − k|s1| −Mk̃2ij ≤ 0 (5.24)

Similarly for s2 we get.

V̇2 = −ks22 − k|s2| −Mk̃2iz ≤ 0 (5.25)

Define a lyapunov function for s3

V3 =s
2
3 +

1

2
ω̃2 +

1

2
k̃2ij

V3 =s
2
3 + ω̃ ˙̃ω +

1

2
k̃2ij

V̇3 =s3ṡ3 + ω̃ ˙̃ω + k̃ij
˙̃kij

V̇3 =s3ṡ3 + ω̃ ˙̃ω + k̃ij
˙̃kij

V̇3 =s3(x6 + x3v1 + w − ŵ − w̃ + k̂ihsin(qt) + k̂ihcos(qt) + k̃ihsin(qt) + k̃ihcos(qt))

+ k̃ij
˙̃kij + ω̃ ˙̃ω

V̇3 =s3(x6 + x3v1 + w − ŵ − w̃ + k̂ihsin(qt) + k̂ihcos(qt)) + ω̃[ ˙̃ω − s3]

+ k̃ih[s3(sin(qt) + cos(qt)) + ˙̃kih]

(5.26)

choose ˙̃kih = −s3(sin(qt) + cos(qt))−Mk̃ih

˙̃ω = s3 − kω̃

w = −x6 − x3v1 + ŵ − k̂ihsin(qt)− k̂ihcos(qt)− ks3 − ksign(s3)

Putt in Eq. (5.26) to get:

V̇3 = −ks23 − k|s3| −Mk̃2ih − kω̃2 (5.27)

Overall lyapunov function and its derivative will becomes:

V = V1 + V2 + V3 (5.28)
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V̇ = −ks21 − k|s1| −Mk̃2ij − ks22 − k|s2| −Mk̃2iz − ks23 − k|s3| −Mk̃2ih − kω̃2 ≤ 0

(5.29)

5.1.4 Simulation Results and Discussion

5.1.4.1 3-DOF Manipulator with a Free Link

5.1.4.2 Simulation 1:

(a)

(b)

Figure 5.11: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Positions, (b) Velocities
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(a)

(b)

(c)

Figure 5.12: Stabilization of 3-DOF Manipulator with a Free,
(a) Sliding surface s1, (b) Sliding surface s2, (b) Sliding surface s3
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(a)

(b)

(c)

Figure 5.13: Stabilization of 3-DOF Manipulator with a Free Link, (a),(b,(c)
Represents d1,d3,d5 are the injected external disturbances in model. d̂1, d̂1, d̂1

are the estimations of disturbances.
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(a)

(b)

Figure 5.14: Stabilization of 3-DOF Manipulator with a Free Link,
(a) Control input u1 = v1, (b) Control input u2 = v2

For Initial Condition 1: Figure 5.11 represents a closed loop response of 3-

DOF Manipulator with a Free Link while adaptive sliding mode control u1 and

u2 is shown in Figure 5.14. The controller parameters are chosen as c = 1,

k = 1.5, M = 2. The controller stabilizes the system from initial conditions

[x(0), y(0), θ(0), ẋ(0), ẏ(0), θ̇(0) = 0, 0, 0, 0, 0, 0]T to a stable equilibrium position

[0, 0, 0, 0, 0, 0]T in less than 5 seconds. The sliding surfaces s1, s2 and s3 shown

in Figure 5.12 reach the value of 0 in about 5 seconds. This control strategy is
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robust and results are carried out in the presence of external disturbances. The

injected disturbance in x2 is d1(x, t) = 0.61sin(10t) + 0.1x21, in x4 is d2(x, t) =

0.6sin(20t) + x22sin(50t) and in x6 is d3(x, t) = 0.5sin(30t)− 0.3x21cos(2t).



Chapter 6

Conclusion and Future Work

This research work has provided a brief discussion of nonlinear control techniques

which have been previously proposed for Nonholonomic systems on the basis of

Backstepping and Adaptive sliding Mode Control. The proposed techniques pro-

vide a solution to the control problem of Nonholonomic systems.

6.1 Conclusion

During the past decades, the interest of researchers in control system society on

nonholonomic systems has greatly increased. This system has a variety of applica-

tions in the field of education, defense, robotics and industry. This research work

presents stabilization of nonholonomic systems without and with the presence of

external disturbances.

The proposed methodologies are based on adaptive sliding mode control and Back-

stepping Control techniques. In sliding mode control, linear sliding surfaces are

defined and controllers are designed such that to force the system states/trajec-

tories reach towards the sliding surfaces and than towards origin which enables

to achieve the system stability. In Backstepping control approach, controllers are

designed to get the zero error between the actual and desired trajectories. In

this strategy forcing the error function towards zero (equilibrium position) which

ensure the system stability.

61
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6.2 Future Research Directions

Based on this research work, certain key areas need to be focused for further

research:

1. Extension of the proposed techniques to third order Nonholonomic systems.

2. Application of Observers.

3. Application sliding mode observation techniques.

4. Practical implementation of the proposed algorithms.
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